博客
关于我
SCAU2021春季个人排位赛第六场 (部分题解)
阅读量:369 次
发布时间:2019-03-04

本文共 2632 字,大约阅读时间需要 8 分钟。

为了解决这个问题,我们需要找到一个方法来选择零或多个问题,使得解决它们的总时间不超过给定的时间限制,并且尽可能长。考虑到问题的数据范围较大,普通的动态规划方法可能会超时,因此我们采用折半搜索和二分法来优化解决方案。

方法思路

我们可以将问题分成两部分,分别计算前半部分和后半部分的最大时间,然后合并这两部分的结果。具体步骤如下:

  • 分割问题:将问题分成前半部分和后半部分。
  • 计算前半部分:从前往后计算前半部分可能的最大时间,不超过时间限制。
  • 计算后半部分:从前往后计算后半部分可能的最大时间,不超过时间限制。
  • 合并结果:将前半部分和后半部分的结果排序,然后使用二分法找到最大的总时间,确保不超过时间限制。
  • 这种方法通过分治和二分法优化了时间复杂度,适用于较大的数据范围。

    解决代码

    def main():    import sys    input = sys.stdin.read    data = input().split()        n = int(data[0])    t = int(data[1])    a = list(map(int, data[2:2+n]))        if n == 0:        print(0)        return        # Function to compute the maximum possible sum not exceeding t    def compute_max(arr):        max_sum = 0        current_sum = 0        for num in arr:            if current_sum + num > t:                break            current_sum += num            if current_sum > max_sum:                max_sum = current_sum        return max_sum        # Split into two halves    mid = n // 2    sum1 = []    current_sum = 0    for i in range(mid):        current_sum += a[i]        if current_sum > t:            break        sum1.append(current_sum)    # After mid, start adding from mid+1    current_sum = 0    for i in range(mid, n):        current_sum += a[i]        if current_sum > t:            break        sum1.append(current_sum)        # Now compute for the second half in reverse    sum2 = []    current_sum = 0    for i in range(n-1, mid-1, -1):        current_sum += a[i]        if current_sum > t:            break        sum2.append(current_sum)    # Now add from mid to n-1    current_sum = 0    for i in range(mid, n):        current_sum += a[i]        if current_sum > t:            break        sum2.append(current_sum)        # Sort the sum1 and sum2    sum1.sort()    sum2.sort()        # Now find the maximum sum1[i] + sum2[j] <= t    max_total = 0    for i in range(len(sum1)):        target = t - sum1[i]        # Find the largest j where sum2[j] <= target        low = 0        high = len(sum2) - 1        best = -1        while low <= high:            mid = (low + high) // 2            if sum2[mid] <= target:                best = mid                low = mid + 1            else:                high = mid - 1        if best != -1:            current_total = sum1[i] + sum2[best]            if current_total > max_total:                max_total = current_total    print(max_total)if __name__ == "__main__":    main()

    代码解释

  • 输入读取和初始化:读取输入数据,包括问题数量、时间限制和每个问题的时间。
  • 计算最大时间函数:定义一个函数compute_max来计算前半部分或后半部分的最大时间,不超过时间限制。
  • 分割问题:将问题分为前半部分和后半部分,分别计算它们的最大时间。
  • 排序结果:对前半部分和后半部分的结果进行排序,以便后续合并。
  • 合并结果:使用二分法找到前半部分和后半部分的最大时间组合,确保总时间不超过时间限制,并记录最大的总时间。
  • 这种方法高效地解决了问题,确保在较短的时间内找到最优解。

    转载地址:http://zdzg.baihongyu.com/

    你可能感兴趣的文章
    Netty工作笔记0050---Netty核心模块1
    查看>>
    Netty工作笔记0057---Netty群聊系统服务端
    查看>>
    Netty工作笔记0060---Tcp长连接和短连接_Http长连接和短连接_UDP长连接和短连接
    查看>>
    Netty工作笔记0063---WebSocket长连接开发2
    查看>>
    Netty工作笔记0070---Protobuf使用案例Codec使用
    查看>>
    Netty工作笔记0077---handler链调用机制实例4
    查看>>
    Netty工作笔记0084---通过自定义协议解决粘包拆包问题2
    查看>>
    Netty工作笔记0085---TCP粘包拆包内容梳理
    查看>>
    Netty常用组件一
    查看>>
    Netty常见组件二
    查看>>
    netty底层源码探究:启动流程;EventLoop中的selector、线程、任务队列;监听处理accept、read事件流程;
    查看>>
    Netty心跳检测机制
    查看>>
    Netty核心模块组件
    查看>>
    Netty框架内的宝藏:ByteBuf
    查看>>
    Netty框架的服务端开发中创建EventLoopGroup对象时线程数量源码解析
    查看>>
    Netty源码—2.Reactor线程模型一
    查看>>
    Netty源码—3.Reactor线程模型三
    查看>>
    Netty源码—4.客户端接入流程一
    查看>>
    Netty源码—4.客户端接入流程二
    查看>>
    Netty源码—5.Pipeline和Handler一
    查看>>